
 NCICB NCICB NCICB NCICB

Common Security Module (CSM)

CSM Guide for Application Developers

Version No: 1.1

Last Modified: 3/21/05

Author : Vinay Kumar, Eric Copen, Kalpesh Patel, Kunal Modi

Team : Common Security Module (CSM)

 Purchase Order# 34552

Client : National Cancer Institute - Center for Bioinformatics,

 National Institutes of Health,

 US Department of Health and Human Services

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 2 of 33

Document History
Document Location
The most current version of this document is located in CVS under security/docs.

Revision History

Version
Number

Revision
Date

Author Summary of Changes

0.1 2/24/05 Vinay Kumar, Eric Copen,
Kalpesh Patel

Initial Table of Contents

0.2 3/02/05 Eric Copen Integrating separate existing documents into this
document, adding Introduction and CSM Overview
Text, and text in other places as needed.

0.3 3/04/05 Kunal Modi Incorporated Comments and Document Restructuring

1.0 3/04/05 Eric Copen Prepared for release

1.1 3/21/05 Eric Copen Incorporated changes from technical writers

Review

Name Team/Role Version Date Reviewed Reviewer Comments

Vinay Kumar Team Lead 0.2 2/14 Approved

JJ Maurer Ekagra Management 0.2 2/15 Approved with minor changes

Jill Hadfield, Liz
Lucchesi

Technical Writers 1.0 3/04 – 3/18 Made minor changes for
caCORE Technical Guide

Related Documents
More information can be found in the following related CSM documents:

Document Name

UPT User Guide

Software Architecture Document

CSM Enterprise Architect Model

CSM Reference Implementation Guide

These and other documents can be found on the CSM website: http://ncicb.nci.nih.gov/core/CSM

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 3 of 33

Table of Contents

1. Introduction to CSM 4
1.1 Purpose 4
1.2 Scope 4
1.3 Using This Guide 4

2. CSM Overview 4
2.1 Explanation 4
2.2 Security Concepts 6

3. The Three Services 7
3.1 AuthenticationManager 7
3.2 AuthorizationManager 8
3.3 UserProvisioningManager 9

4. Deployment Models 9
4.1 Authentication 9

4.1.1 Introduction 9
4.1.2 Purpose 9
4.1.3 Scope 9
4.1.4 Definitions, Acronyms, and Abbreviations 10
4.1.5 JAR Placement 10
4.1.6 Authentication Properties and Configuration 10
4.1.7 Database Properties and Login Module Configuration 11
4.1.8 Configuring a Login Module in JBoss 13
4.1.9 LDAP Properties and Login Module Configuration 14

4.2 Authorization 16
4.2.1 Introduction 16
4.2.2 Software Products 17
4.2.3 Integrating CSM APIs – Overview 17
4.2.4 Deployment Steps 17

4.3 Provisioning 21
4.3.1 Introduction 21
4.3.2 UPT Release Contents 21
4.3.3 UPT Installation Modes 22
4.3.4 Deployment Checklist 25
4.3.5 Deployment Steps 25

5. Integrating with the CSM Authentication Service 29
5.1 Importing and Using the CSM Authentication Manager Class 29

6. Integrating with the CSM Authorization Service 31
6.1 Importing and Using the CSM Authorization Manager Class 31

7. Integrating with the User Provisioning Service 32

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 4 of 33

CSM Guide for Application Developers
1. Introduction to CSM

1.1 Purpose
This document provides all the information application developers need to successfully
integrate with NCICB’s Common Security Module (CSM). The CSM was chartered to
provide a comprehensive solution to common security objectives so not all development
teams would have to create their own security methodology. CSM is flexible enough to allow
application developers to integrate security with minimal coding effort. This phase of the
Common Security Module brings the NCICB team one step closer to the goal of application
security management, single sign-on, and Health Insurance Portability and Accountability
Act (HIPPA) compliance.

1.2 Scope
This document shows how to deploy and integrate the CSM services, including
Authentication, Authorization, and User Provisioning. For specific questions regarding using
the UPT, refer to the User Provisioning Tool (UPT) User Guide
(http://ncicb.nci.nih.gov/core/CSM).

1.3 Using This Guide
You should begin by reading the CSM Overview on this page to learn the CSM concepts and
how they apply to your own application. Next, The Three Services section on page 7 explains
the three manager interfaces and the methods to incorporate them. The Deployment Models
section on page 9 explains how to deploy the services and how to integrate with them. The
deployment and integration sections (Integrating with the CSM Authentication Service on
page 29, Integrating with the CSM Authorization Service on page 31 and Integrating with the
User Provisioning Service on page 32) consist of multiple step-by-step guides to help you
with a variety of configurations.

2. CSM Overview

2.1 Explanation
The CSM provides application developers with powerful security tools in a flexible delivery.
CSM provides solutions for:

1) Authentication - validating and verifying a user’s credentials to allow access to an
application. CSM, working with credential providers (Lightweight Directory Access
Protocol (LDAP), Relational Database Management Systems (RDBMS), etc.), confirms
that a user exists and that the password is valid for that application.

2) Authorization - granting access to data, methods, and objects. CSM incorporates an
Authorization schema and database so that users can only perform the operations or
access the data to which they have access rights.

3) User Provisioning - creating or modifying users and their associated access rights to
your application and its data. CSM provides a web-based UPT that can easily be
integrated with a single or multiple applications and authorization databases. The UPT
provides functionality to create authorization data elements like Roles, Privileges,

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 5 of 33

Protection Elements, Users, etc., and also provides functionality to associate them with
each other. The runtime API can then use this authorization data to authorize user actions.
The UPT consists of two modes – Super Admin and Admin.
a. Super Admin – accessed by the UPT’s overall administrator; used to register an

application and assign administrators.
b. Admin – used by application administrators to modify authorization data, such as

roles, privileges, users, etc.

Figure 2-1 shows how CSM works with an application and independent entities, such as the
credential providers and authorization schema, to perform authentication and authorization.

Figure 2-1 CSM interactions for authentication and authorization (see text)

CSM works with Java Authentication and Authorization Service (JAAS) to authenticate and
authorize for the Application ABC. To authenticate, it references credential providers such as
an LDAP or RDBMS. CSM can be configured to check multiple credential providers in a
defined order. To authorize, CSM refers to the Authorization Schema. The Authorization
Schema contains the Users, Roles, Protection Elements, etc., and their associations, so that
the application knows whether or not to allow a user to access a particular object. The
Authorization data can be stored on a variety of databases. It is created and modified by the
Application Administrator using the web-based UPT.

Authorize

Credential Providers

LDAP
Application server

Application XYZ

Security module

Common
Authorization

Schema

Web server User

Provisioning

Web

interface

Application

server

User

Provisioning

application

RDBMS

JAAS

A
u
th
e
n
tica

te

Authenticate

A
u
th
o
rize

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 6 of 33

2.2 Security Concepts
In order to successfully integrate CSM with an application, it is important to understand the
definitions for the security concepts defined in Table 2-1. Application Developers should
understand these concepts and begin to understand how they apply to their particular
application.

Security Concept Definition

Application Any software or set of software intended to achieve
business or technical goals.

User A User is someone that requires access to an application.
Users can become part of a Group, and can have an
associated Protection Group and Roles.

Group A Group is a collection of application users. By
combining users into a Group, it becomes easier to
manage their collective roles and access rights in your
application.

Protection Element A Protection Element is any entity (typically data) that
has controlled access. Examples include Social Security
Number, City, and Salary. Protection Elements can also
include operations, buttons, links, etc.

Protection Group A Protection Group is a collection of application
Protection Elements. By combining Protection Elements
into a Protection Group, it becomes easier to associate
Users and Groups with rights to a particular data set.
Examples include Address and Personal Information.

Privilege A Privilege refers to any operation performed on data.
Examples include Delete Record or Modify Record.

Role A Role is a collection of application Privileges.
Examples include Record Admin. and HR Manager.

Table 2-1 Security concept definitions

CSM users need to identify aspects of the application that should be labeled as Protection
Elements. These elements are combined to Protection Groups, and then users are assigned
Roles for that Protection Group.

Shown in Table 2-2 are definitions of related security terms.

Related Concept Definition

Credential Provider

A credential is a data or set of data which represents an
individual uniquely to a given application (username, password,
etc.). Credential providers are trusted organizations that create
secure directories or databases that store credentials. In an

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 7 of 33

Related Concept Definition

 authentication transaction, organizations check with the
credential providers to verify entered information is valid. For
example, the NCI network uses a credential provider to verify
that a user name and password match and are valid before
allowing access.

LDAP

Credential providers may choose to store credential information
using a directory based on LDAP. An LDAP is simply a set of
protocols for accessing information directories. Using LDAP,
client programs can login to a server, access a directory, and
verify credential entries.

RDBMS
Credential providers may choose to store credential information
with a RDBMS. Unlike with LDAP, credential data is stored in
the form of related tables.

 Table 2-2 Related security concept definitions

3. The Three Services
The Security APIs consist of three primary components - Authentication, Authorization and
User Provisioning. The following three corresponding managers control these components:

• AuthenticationManager

• AuthorizationManager

• UserProvisioningManager

3.1 AuthenticationManager
The AuthenticationManager is an interface that authenticates a user against a credential
provider. See Integrating with the CSM Authorization Service on page 31 to learn how to
integrate with the AuthenticationManager.

The AuthenticationManager contains the methods as shown in Table 3-1.

Return type Method Name

boolean login(String userName, String password) throws CSException

Void initialize(String applicationContextName);

Void setApplicationContextName(String applicationContextName);

String getApplicationContextName()

Object getAuthenticatedObject() (future release)

Subject getSubject() (future release)

Table 3-1 AuthenticationManager methods

Developers will work primarily with the login method. Detailed descriptions about each
method’s functionality and its parameters are present in the Javadocs.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 8 of 33

3.2 AuthorizationManager
The AuthorizationManager is an interface which provides run-time methods with the purpose
of checking access permissions and provisioning certain authorization data. See Integrating
with the CSM Authorization Service on page 31 to learn how to integrate with the
AuthorizationManager.

The AuthorizationManager contains the methods as shown in Table 3-2.

Return Type Method

User getUser(String loginName)

ApplicationContext getApplicationContext()

void assignProtectionElement(String protectionGroupName, String
protectionElementObjectId, String
protectionElementAttributeName)throws CSTransactionException;

void setOwnerForProtectionElement(String protectionElementObjectId,
String[] userNames)throws CSTransactionException;

void deAssignProtectionElements(String protectionGroupName,String
protectionElementObjectId)throws CSTransactionException;

void createProtectionElement(ProtectionElement protectionElement)throws
CSTransactionException;

boolean checkPermission(AccessPermission permission, Subject subject) throws
CSException;

boolean checkPermission(AccessPermission permission, String userName) throws
CSException;

boolean checkPermission(String userName, String objectId, String attributeName,
String privilegeName) throws CSException;

boolean checkPermission(String userName, String objectId, String privilegeName)
throws CSException;

Principal[] getPrincipals(String userName);

ProtectionElement getProtectionElement(String objectId)throws
CSObjectNotFoundException;

ProtectionElement getProtectionElementById(String protectionElementId) throws
CSObjectNotFoundException;

void assignProtectionElement(String protectionGroupName, String
protectionElementObjectId)throws CSTransactionException;

void setOwnerForProtectionElement(String userName, String
protectionElementObjectId, String
protectionElementAttributeName)throws CSTransactionException;

void initialize(String applicationContextName);

List getProtectionGroups();

ProtectionElement getProtectionElement(String objectId,String attributeName);

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 9 of 33

Return Type Method

Object secureObject(String userName, Object obj) throws CSException;

Collection secureCollection(String userName,Collection objects) throws
CSException;

Set getProtectionGroups(String protectionElementId) throws
CSObjectNotFoundException;

Collection getPrivilegeMap(String userName,Collection protectionElements) throws
CSException;

Table 3-2 AuthorizationManager methods

Detailed descriptions about each method’s functionality and its parameters are present in the
Javadocs.

3.3 UserProvisioningManager
The UserProvisioningManager is the interface used by the UPT. This manager provides an
interface where application developers can provision user access rights. Since the
UserProvisioningManager is only used internally by the UPT Tool, it is not discussed in
detail in this section.

4. Deployment Models

4.1 Authentication

4.1.1 Introduction
The CSM Authentication Service provides a simple and comprehensive solution for user
authentication. Developers can easily incorporate the service into their applications with
simple configuration and coding changes. This service allows authentication using LDAP
and RMDBS credential providers.

4.1.2 Purpose
This section serves as a guide to help caCORE developers integrate existing applications
with the CSM application. This section outlines a step by step process that addresses what
developers need to know in order to successfully integrate, including:

• Jar placement

• Configuring the ApplicationSecurityConfig.xml

• Database properties and configuration

• LDAP properties and configuration

4.1.3 Scope
The CSM Authentication Service is available for all caCORE applications. Although it can
be used exclusively and is effective on its own, it does not need to replace existing
authentication. Rather, it can be used to supplement your application’s current authentication
mechanism. Currently, only RDBMS-based and LDAP-based authentication is supported by
CSM.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 10 of 33

4.1.4 Definitions, Acronyms, and Abbreviations
Shown in Table 4-1 are definitions important for understanding the rest of the section.

Term Definition

ABC Application In a few instances we refer to an ABC application (abcapp) which is
simply a sample application. Use of this example helps to illustrate
how to integrate an application in CSM. It has been integrated with
the CSM code to perform the authentication using the ABC
database.

Login Module Responsible for authenticating users and for populating users and
groups. A Login Module is a required component of an
authentication provider, and can be a component of an identity
assertion provider if you want to develop a separate LoginModule
for perimeter authentication. LoginModules that are not used for
perimeter authentication also verify the proof material submitted (for
example, a user password).

JAAS Set of Java packages that enable services to authenticate and enforce
access controls upon users. JAAS implements a Java version of the
standard Pluggable Authentication Module framework, and supports
user- based authorization.

Table 4- 1Definitions for important terms

4.1.5 JAR Placement
The CSM Application is available as a JAR which needs to be placed in the classpath of the
application. Along with this JAR, there are many supporting JARs on which the CSM API
depends. These should be added in the folder <application-web-root>\WEB-
INF\lib.

4.1.6 Authentication Properties and Configuration

4.1.6.1 Requirements
If preferred, the client application abcapp can use its own AuthenticationManager instance
instead of the default JAAS implementation. In order to configure its own implementation of
the AuthenticationManager, the client application needs its own entry in the
ApplicationSecurityConfig.xml file. If no entry is found for the given application
context name in the Authentication.Properties file, then the default JAAS
implementation is used for performing the authentication.

4.1.6.2 Configuring an Authentication Manager
Developers can specify their own AuthenticationManager implementation class by making
an entry in ApplicationSecurityConfig.xml against the application context name as
shown in Figure 4-1. Note that the application name must match the application context
name provided at the time of obtaining the instance of the AuthenticationManager using the
SecurityServiceProvider. Also the class name provided should be fully qualified.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 11 of 33

Figure 4-1 Specifying AuthenticationManager implementation class

1. The location of the ApplicationSecurityConfig.xml needs to be specified to the API. This
is done using a system property. In JBoss, edit the JBoss properties-service.xml to
provide a startup parameter to the JBoss server. This file is located at the following path:
{jboss-home}/server/standard/deploy/properties-service.xml where {jboss-home} is the
base directory where JBoss is installed on the server.

2. Add the following entry to the existing properties in the properties-service.xml file:
<attribute name="Properties"> <!-- could already ex ist -->

:

gov.nih.nci.security.configFile=/foo/bar/Applicatio nSecurityConfig.xml

:

</attribute> <!-- could already exist -->

The gov.nih.nci.security.configFile is the name of the property which points
to the fully qualified path foo/bar/ApplicationSecurityConfig.xml where the
ApplicationSecurityConfig.xml has been created above. The name of the
property has to be the gov.nih.nci.security.configFile and cannot be modified
as it is a system-wide property.

3. Save this file in a deploy folder (for example, {jboss-
home}/server/default/deploy/)

Note: When deploying to JBoss 3.2.3, the properties-service.xml file is already
located in the folder: {jboss-home}/server/default/deploy/ .

4.1.7 Database Properties and Login Module Configuration

4.1.7.1 Requirements
In order to authenticate using the RDBMS database, developers must provide:

• The details about the database

 <application>

 <context-name>

 FooApplication

 </context-name>

 <authentication>

 <authentication-provider-class>

 com.Foo.AuthenticationManagerClass

 </authentication-provider-class>

 </authentication>

 :

 :

 </application>

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 12 of 33

• The actual query which will make the database calls

The CSM goal is to make authentication work with any compatible application or credential
provider. Therefore we use the same Login Modules to perform authentication, and these
must possess a standard set of properties.

The properties needed to establish a connection to the database include:

• Driver - The database driver loaded in memory to perform database operations

• URL - The URL used to locate and connect to the database

• User - The user name used to connect to the database

• Password - The password used to connect to the database

The following property provides the query to be used for the database to retrieve the user.

• Query - The query which will be fired against the RDBMS tables to verify the user id
and the password passed for authentication

The Configuring a Login Module in JAAS section on this page shows how to configure using
JAAS or the JBoss login-config.xml file.

4.1.7.2 Configuring a Login Module in JAAS
Developers can configure a login module for each application by making an entry in the
JAAS configuration file for that application name or context.

The general format for making an entry into the configuration files is shown in Figure 4-2.

Figure 4-2 Configuring a login module

For abcapp , which uses RDBMSLoginModule, the JAAS configuration file entry is shown
in Figure 4-3.

Application 1 {

 ModuleClass Flag ModuleOptions;

 ModuleClass Flag ModuleOptions;

 ...

 };

Application 2 {

 ModuleClass Flag ModuleOptions;

 ...

 };

 ...

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 13 of 33

Figure 4-3 abcapp JAAS configuration file entry

The configuration file entry contains the following:

• The application is abcapp .

• The ModuleClass is gov.nih.nci.abcapp.loginmodules.RDBMSLoginModule .

• The Required flag indicates that authentication using this credential source is a must for
overall authentication to be successful.

• The ModuleOptions are a set of parameters which are passed to the ModuleClass to
perform its actions. In the prototype, the database details as well as the query are passed
as parameters: driver="oracle.jdbc.driver.OracleDriver"
url="jdbc:oracle:thin:@cbiodb2-d.nci.nih.gov:1521:c bdev"
user="USERNAME" passwd="PASSWORD" query="SELECT * F ROM users
WHERE username=? and password=?"

Since abcapp has only one credential provider only one corresponding entry was made in
the configuration file. If the application uses multiple credential providers then the
LoginModules can be stacked. A single configuration file can contain entries for multiple
applications.

4.1.8 Configuring a Login Module in JBoss
If an application uses the JBoss Server, developers can perform login module configuration
differently. Rather than creating a JAAS configuration file, simply use the JBoss login-

config.xml file which is located at {jboss-home}\server\{server-
name}\conf\login-config.xml.

Shown in Figure 4-4 is the entry for the abcapp application:

abcapp

{

gov.nih.nci.security.authentication.loginmodules.RD BMSLoginModule Required

driver="oracle.jdbc.driver.OracleDriver" url="jdbc: oracle:thin:@cbiodb2-

d.nci.nih.gov:1521:cbdev"

user="USERNAME"

passwd="PASSWORD"

query="SELECT * FROM users WHERE username=? and pas sword=?"

}

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 14 of 33

Figure 4-4 Example abcapp entry in login-config.xml

As shown in this example:

• The application-policy specifies the application for which we are defining the
authentication policy which is abcapp .

• The login-module is the LoginModule class which is to be used to perform the
authentication task; in this case it is
gov.nih.nci.security.loginmodules.RDBMSLoginModule .

• The flag provided is “required ”.

• The module-options list down the parameters which are passed to the LoginModule to
perform the authentication task. In this case they are:
<module-option

name="driver">oracle.jdbc.driver.OracleDriver</modu le-option>

<module-option name="url">jdbc:oracle:thin:@cbiodb2 -
d.nci.nih.gov:1521:cbdev</module-option>

<module-option name="user">USERNAME</module-option>

<module-option name="passwd">PASSWORD</module-optio n>

<module-option name="query">SELECT * FROM users WHE RE username=?
and password=?</module-option>

4.1.9 LDAP Properties and Login Module Configuration

4.1.9.1 Requirements
The default implementation also provides an LDAP-based authentication module to be used
by the client applications. In order to authenticate using the LDAP, developers must provide:

<application-policy name = "abcapp">

 <authentication>

 <login-module code = "gov.nih.nci.security.loginm odules.RDBMSLoginModule" flag

= "required" >

 <module-option name="driver"> oracle.jdbc.driver .OracleDriver</module-

option>

 <module-option name="url">jdbc:oracle:thin:@cbio db2-

d.nci.nih.gov:1521:cbdev</module-option>

 <module-option name="user">USERNAME</module-opti on>

 <module-option name="passwd">PASSWORD</module-op tion>

 <module-option name="query">SELECT * FROM users WHERE username=? and

password=?</module-option>

 </login-module>

 </authentication>

</application-policy>

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 15 of 33

• The details about the LDAP server

• The label for the user ID Common Name (CN) or User Identification (UID) in the LDAP
server

The properties needed to establish a connection to the database include:

• ldapHost – The URL of the actual LDAP server.

• ldapSearchableBase – The base of the LDAP tree from where the search should begin.

• ldapUserIdLabel – The actual user id label used for the CN entry in LDAP.

4.1.9.2 Configuring a LDAP Login Module in JAAS
For abcapp , which uses LDAPLoginModule, the JAAS config file entry is shown in Figure
 4-5.

Figure 4-5 Example JAAS configuration file entry

As shown in Figure 4-5:

• The application is abcapp .

• The ModuleClass is gov.nih.nci.abcapp.loginmodules.LDAPLoginModule .

• The Required flag indicates that authentication using this credential source is a must for
overall authentication to be successful.

• The LDAP details are passed:

 ldapHost="ldaps://ncids2b.nci.nih.gov:636"

 ldapSearchableBase= “ou=nci,o=nih”

ldapUserIdLabel=”cn”

Note: Since abcapp has only one credential provider, only one corresponding entry was
made in the configuration file. If the application uses multiple credential providers then the
LoginModules can be stacked. A single configuration file can contain entries for multiple
applications.

abcapp

{

gov.nih.nci.security.authentication.loginmodules.LD APLoginModule Required

ldapHost= “ ldaps://ncids2b.nci.nih.gov:636”

ldapSearchableBase= “ou=nci,o=nih”

ldapUserIdLabel=”cn”

}

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 16 of 33

4.1.9.3 Configuring a LDAP Login Module in JBoss
If an application uses the JBoss Server, developers can perform login module configuration
differently. Rather than creating a JAAS configuration file, simply use the JBoss login-

config.xml file which is located at {jboss-home}\server\{server-
name}\conf\login-config.xml.

Shown in Figure 4-6 is the entry for the abcapp application:

Figure 4-6 Example LDAP JBoss configuration file

As shown in Figure 4-6:

• The application-policy is the application for which we are defining the
authentication policy – in this case abcapp .

• The login-module is the LoginModule class which is to be used to perform the
authentication task; in this case it is
gov.nih.nci.security.loginmodules.LDAPLoginModule .

• The flag provided is “required ”.

• The module-options list down the parameters which are passed to the LoginModule to
perform the authentication task. In this case they are:
<module-option
name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</mo dule-option>

<module-option name="ldapSearchableBase">ou=nci,o=n ih</module-
option>

<module-option name="ldapUserIdLabel">cn</module-op tion>

4.2 Authorization

4.2.1 Introduction
The security APIs have been provided to facilitate the security needs at run time. These APIs
can be used programmatically. They have been written using Java, so it is assumed that
developers know the Java language.

<application-policy name = "abcapp">

 <authentication>

 <login-module code = "gov.nih.nci.security.logi nmodules.LDAPLoginModule" flag =

"required" >

 <module-option name="ldapHost">ldaps://ncids2 b.nci.nih.gov:636</module-option>

 <module-option name="ldapSearchableBase">ou=n ci,o=nih</module-option>

 <module-option name="ldapUserIdLabel">cn</mod ule-option>

 </login-module>

 </authentication>

</application-policy>

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 17 of 33

This section outlines integration steps. For further support, CSM recommends reviewing the
CSM Enterprise Architecture Model (found on the NCICB Intranet site:
http://ncicbintra.nci.nih.gov/intra/caCORE/documentation).

4.2.2 Software Products
Table 4.2 displays descriptions of software products used for authorization.

Table 4- 2 Authorization software products

4.2.3 Integrating CSM APIs – Overview
This section provides instruction for integrating the CSM APIs with JBoss. The integration is
flexible enough to meet the needs for several scenarios depending on the number of
applications hosted on JBoss and whether or not a common schema is used. Following are
the scenarios:

1. JBOSS is hosting a number of applications
a. use common schema
b. use separate schema

2. JBOSS is hosting only one application
a. use common schema
b. use separate schema

4.2.3.1 Jar Placement
The CSM Application is available as a JAR which needs to be placed in the classpath of the
application. Along with this JAR, there are many supporting JARs on which the CSM API
depends. These should be added in the folder <application-web-root>\WEB-INF\lib .

4.2.4 Deployment Steps
Step 1: Create and Prime a MySQL Database

Software Product Description

JBoss The JBoss/Server is the leading Open Source, standards-
compliant, J2EE based application server implemented in 100%
Pure Java. A majority of caCORE applications use this server to
host their applications.

MySQL MySQL is an open source database. Its speed, scalability and
reliability make it a popular choice for Web developers. CSM
recommends storing authorization data in a MySQL database.

Hibernate Hibernate is an object/relational persistence and query service
for Java. CSM requires developers to modify a provided
Hibernate configuration file (hibernate.cfg.xml) in order
to connect to the appropriate application authorization schema.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 18 of 33

Note: When deploying Authorization, application developers may want to make use of a
previously installed common Authorization Schema. In this case a MySQL database already
exists, so skip this step. Also note that the Authorization Schema used by the run-time API
and the UPT has to be the same.

1. Log into the MySQL database using an account id which has permission to create new
databases.

2. In the AuthorizationSchema.sql file replace the “<<database_name>>” tag with the name
of the authorization schema (for e.g. “caArray”).

3. Run this AuthorizationSchema.sql on the MySQL prompt. This should create a database
with the given name.

4. Now in the AuthorizationSchemaPriming.sql, replace the
“<<application_context_name>>” with the name of application. This is the key to derive
security for the application. This will be called application context name.

5. Run this AuthorizationSchemaPriming.sql on the MySQL prompt. This should populate
the database with the initial data. Verify this by querying the application table. It should
include one record only.

Step 2: Configure Datasource

1. Modify the provided mysql-ds.xml file which contains information for creating a
datasource. One entry is required for each database connection. Edit this file to replace:

a. the <<application_context_name>> tag with the name of the authorization schema
(for example, “csmupt”).

b. the <<database_user_id>> with the user id and <<database_user_password>> with
the password of the user account, which will be used to access the Authorization
Schema created in Step 1 above.

c. the <<database_url>> with the URL needed to access the Authorization Schema
residing on the MySQL database server.

Shown in Figure 4-7 is an example of the file.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 19 of 33

Figure 4-7 Example mysql-ds.xml file

2. Place the mysql-ds.xml file in the JBoss deploy directory.

Step 3: Create a Directory
1. Create a directory on the server where all the configuration files pertaining to the

application will be kept. This directory can have any name and can reside anywhere on
the server. However, it should be accessible to the JBoss id running the application.

Note: In case the application is deployed on a shared server which hosts other applications
that are already using CSM, then this folder may already exist.

Step 4: Configure Hibernate
1. The provided hibernate.cfg.xml file requires modification to include configuration details

to connect to the appropriate application authorization schema. For the property
connection.datasource, replace the <<upt_context_name>> with the application name for
the UPT. For example, the property may contain java:/security or java:/caArray. This
application name should be same as the one created in Step 1.

2. Rename this file as <<application_context_name>>.hibernate.cfg.xml (e.g. for caArray it
will be caArray.hibernate.cfg.xml). Place this file in the directory created in Step 2. Make
sure that the JBoss id has access to it.

Note: If the application requires use of a commonly installed Authorization Schema, it can
use the same Hibernate configuration.

Step 5: Modify ApplicationSecurityConfig.xml
1. Edit the provided ApplicationSecurityConfig.xml as shown in Figure 4-8.

Replace the <<application_context_name>> with the application name. This
application name should be the same as the one created in Step 1.

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>
 <jndi-name>csmupt</jndi-name>
 <connection-url>jdbc:mysql://cbiodev104.nci.nih .gov:3306/csmupt</connection-url>
 <driver-class>org.gjt.mm.mysql.Driver</driver-c lass>
 <user-name>name</user-name>
 <password>password</password>
 </local-tx-datasource>

 <local-tx-datasource>
 <jndi-name>security</jndi-name>
 <connection-url>jdbc:mysql://cbiodev104.nci.nih .gov:3306/csd</connection-url>
 <driver-class>org.gjt.mm.mysql.Driver</driver-c lass>
 <user-name>name</user-name>
 <password>password</password>
 </local-tx-datasource>

</datasources>

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 20 of 33

Figure 4-8 Example ApplicationSecurityConfig.xml file

2. Also edit the file to replace the <<hibernate_cfg_file_path>> with the fully qualified path
of the hibernate configuration file <<application_context_name>>.hibernate.cfg.xml (for
example, for caArray it will be caArray.hibernate.cfg.xml created in Step 4).

3. Place this file in the directory mentioned in Step 3. Make sure that the JBoss id has access
to it.

Note: If the application is deployed on a shared server which hosts other applications that are
already using CSM, then this file may be present already. Note that there can only be one
ApplicationSecurityConfig.xml file per JBoss installation, so simply add a new
application entry to the existing file.

Step 6: Make an Addition to the JBoss Startup Properties File

1. Edit the JBoss properties-service.xml to provide a startup parameter to the
JBoss server. This file is located at {jboss-
home}/server/standard/deploy/properties-service.xml where
{jboss-home} is the base directory where JBoss is installed on the server. Add the
following entry:

 <attribute name="Properties"> <!-- could already e xist -->

 :

 gov.nih.nci.security.configFile=/foo/bar/Applicatio nSecurityConfig.xml

 :

</attribute> <!-- could already exist -->

<application>

 <context-name>

 <<application_context_name>>

 </context-name>

 <authentication>

 <authentication-provider-class>

 <!-- Fully qualified class name-->

 </authentication-provider-class>

 </authentication>

 <authorization>

 <authorization-provider-class>

 <!-- Fully qualified class name-->

 </authorization-provider-class>

 <hibernate-config-file>

 <!-- Fully qualified file path -->

 <<hibernate_cfg_file_path>>

 </hibernate-config-file>

 </authorization>

</application>

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 21 of 33

o The gov.nih.nci.security.configFile is the name of the property which

points to the fully qualified path foo/bar/ApplicationSecurityConfig.xml
where the ApplicationSecurityConfig.xml was created in Step 4. The name of
the property has to be the gov.nih.nci.security.configFile and cannot be
modified as it is a system-wide property.

2. Save this file in a deploy folder. An example is: {jboss-
home}/server/default/deploy/.

Note: When deploying to JBoss 3.2.3, the properties-service.xml file is already
located in the folder {jboss-home}/server/ default/deploy/. In case the application is
deployed on a shared server which hosts other applications that are already using CSM, then
this property could be present.

4.3 Provisioning

4.3.1 Introduction
UPT is a web application used to provision an application’s authorization data. The UPT
provides functionality to create authorization data elements like Roles, Privileges, Protection
Elements, Users, etc., and also provides functionality to associate them with each other. The
runtime API can then use this authorization data to authorize user actions.

This section of the guide explains how to deploy the UPT from start to finish - from
uploading the Web Application Archive (WAR) and editing configuration files, to synching
the UPT with the application. See Integrating with the User Provisioning Service on page 32
if you need to integrate with an existing UPT deployment.

This section details the UPT release contents, explains multiple ways in which the UPT can
be deployed, and outlines the steps that result in a successful deployment.

4.3.2 UPT Release Contents
The UPT is released as a compressed web application in the form of a WAR (Web Archive)
File. Along with the WAR, the release includes sample configuration files that help
developers configure the UPT with their application(s).

The UPT Release contents can be found in the UPT.zip file found on the NCICB download
site (http://ncicb.nci.nih.gov/download/index.jsp). The UPT Release contents include the
files in Table 4.3.

File Description

csmupt.war The UPT Web Application

ApplicationSecurityConfig.xml The XML file containing the configuration data for the
UPT.

hibernate.cfg.xml The sample XML file which contains the hibernate-
mapping and the database connection details.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 22 of 33

File Description

AuthorizationSchema.sql This Structured Query Language (SQL) script is used
to create an instance of the Authorization database
schema which will be used by UPT for the purpose of
authorization. The same script can be used to create
instances of authorization schema for a variety of
applications.

UPTDataPriming.sql This SQL script is used for priming data in the UPT’s
authorization schema.

mysql-ds.xml This file contains information for creating a
datasource. One entry is required for each database
connection. Place this file in the JBoss deploy
directory.

Table 4- 3 UPT release contents

4.3.3 UPT Installation Modes
UPT was developed as a flexible application that can be deployed in multiple ways
depending on the need or scenario. The three primary modes to install the UPT include the
following and are described in the following sections:

• Single Installation, Single Schema

• Single Installation, Multiple Schemas

• Local installation, Local schema

4.3.3.1 Single Installation, Single Schema
In the single installation, single schema deployment scheme as shown in Figure 4-9, there is
only one instance of UPT hosted on a Common JBoss Server. A common installation is used
to administer the authorization data for all applications. The authorization data for all the
applications is stored on a common database. Therefore an application using UPT does not
have to install its own authorization schema. Also, all applications can use the same
hibernate-config file since they point to the same database.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 23 of 33

Figure 4-9 Single installation, single schema deployment scheme

4.3.3.2 Single Installation, Multiple Schemas
As in the single schema deployment, the single installation, multiple schemas deployment
calls for the UPT to be hosted on a single JBoss Common Server as shown in Figure 4-10. A
common installation is also used to administer the authorization data for all applications.
What makes this mode different is that an application can use its own authorization schema
on a separate database if preferred. The authorization data can sit on individual databases,
and at the same time some applications can still opt to use the Common Authorization
Schema. Using this mode requires each application to maintain its own hibernate-config
file pointing to the database where its Authorization Schema is located. So when an
application uses the UPT, the UPT communicates to the authorization schema of that
application only.

UPT

Common
Authorization
Database

App 1

Ap p 2

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 24 of 33

Figure 4-10 Single installation, multiple schemas deployment scheme; the three colors of arrows correspond to
the three different applications shown

4.3.3.3 Local Installation, Local Schema
The local installation, local schema deployment is the same as single installation, single
schema, except that the UPT is hosted locally by the application as shown in Figure 4-11.
This installation of UPT is not shared with other applications. This local installation is used
to administer the authorization data for that particular application (or set of related
applications) only. The authorization data for the application sits on its own database. In this
scenario, the application requires its own hibernate-config file pointing to the database
where its Authorization Schema is located.

UPT

App 1

Authorization
database for App 1

Authorization
database for App 2

App 3

Common
Authorization

Database

App 2

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 25 of 33

Figure 4-11 Local installation, local schema deployment scheme

4.3.4 Deployment Checklist
Before deploying the UPT, verify the following environment and configuration conditions
are met. This software and access credentials/parameters are required.

• Environment

o JBoss 4.0 Application Server

o MySQL 4.0 Database Server (with an account that can create databases)

• UPT Release Components
o csmupt.war

o AuthorizationSchema.sql

o UPTDataPriming.sql

o ApplicationSecurityConfig.xml

o hibernate-config file

4.3.5 Deployment Steps
Step 1: Create and Prime MySQL Database

1. Log into MySQL database using an account id which has permission to create new
databases.

2. In the AuthorizationSchema.sql file replace the <<database_name>> tag with the name of
the UPT Authorization schema (for example, “csmupt”).

3. Run this AuthorizationSchema.sql on the MySQL prompt. This should create a database
with the given name.

4. In the UPTDataPriming.sql, replace:

o The <<upt_context_name>> with the name of UPT application. (For simplification, it

UPT

Authorization

Database

App 1

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 26 of 33

is better to name the database and UPT application the same; for example, “csmupt”).

o The <<super_admin_login_id>> with the login id of the user who is going to act as
the Super Admin for that particular installation of UPT. If using the NCICB LDAP as
the authentication mechanism, the super_admin_login_id should be the NCICB
LDAP login id for that particular user. Also provide the first name and last name for
the same by replacing <<super_admin_first_name >> and <<super_admin_last_name
>>.

5. Run the UPTDataPriming.sql on the MySQL prompt. This should populate the database
with the initial data. Verify by querying the application, user, protection_element and
user_protection_element tables. They should have one record each.

Step 2: Configure Datasource
1. Modify the mysql-ds.xml file which contains information for creating a datasource. One

entry is required for each database connection. Edit this file to replace:

o The <<application_context_name>> tag with the name of the authorization schema
(for example, “csmupt”).

o The <<database_user_id>> with the user id and <<database_user_password>> with
the password of the user account, which will be used to access the Authorization
Schema created in Step 1 above.

o The <<database_url>> with the URL needed to access the Authorization Schema
residing on the MySQL database server.

Shown in Figure 4-12 is an example mysql-ds.xml file.

Figure 4-12 Example mysql-ds.xml file

2. Place the mysql-ds.xml file in the JBoss deploy directory.

Step 3: Create Directory
1. Create a directory on the server where all the configuration files pertaining to the UPT

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>
 <jndi-name>csmupt</jndi-name>
 <connection-url>jdbc:mysql://cbiodev104.nci.nih .gov:3306/csmupt</connection-url>
 <driver-class>org.gjt.mm.mysql.Driver</driver-c lass>
 <user-name>name</user-name>
 <password>password</password>
 </local-tx-datasource>

 <local-tx-datasource>
 <jndi-name>security</jndi-name>
 <connection-url>jdbc:mysql://cbiodev104.nci.nih .gov:3306/csd</connection-url>
 <driver-class>org.gjt.mm.mysql.Driver</driver-c lass>
 <user-name>name</user-name>
 <password>password</password>
 </local-tx-datasource>

</datasources>

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 27 of 33

will be kept. This directory can have any name and can reside anywhere on the server.
However, it should be accessible to the JBoss id running the UPT.

Step 4: Configure Hibernate
1. The provided hibernate.cfg.xml file needs to be modified to include configuration details

to connect to the appropriate UPT Authorization Schema. For the property
connection.datasource, replace the <<upt_context_name>> with the application name for
the UPT. For example, the property may contain java:/upt or java:/csmupt. This
application name should be the same as the one created in Step 1.

2. Rename this file to upt.hibernate.cfg.xml (add upt Prefix). Place this file in the directory
created in Step 3. Make sure that the JBoss id has access to it.

Step 5: Modify ApplicationSecurityConfig.xml
1. Edit the provided ApplicationSecurityConfig.xml.

2. Replace the <<upt_context_name>> with the application name for the UPT. This
application name should be same as the one created in Step 1.

3. Replace the <<hibernate_cfg_file_path>> with the fully qualified path of the hibernate
configuration file upt.hibernate.cfg.xml created in Step 3.

4. Place this file in the directory. Make sure that the JBoss id has access to it.

Step 6: Make an Addition to the JBoss Startup Properties File
1. Edit the JBoss properties-service.xml to provide a startup parameter to the JBoss server.

This file is located at the following path: {jboss-home}/server/standard/deploy/properties-
service.xml where {jboss-home} is the base directory where JBoss is installed on the
server. Add the following entry to the existing properties:

 <attribute name="Properties"> <!-- could already e xist -->
 :
 gov.nih.nci.security.configFile=/foo/bar/Applicatio nSecurityConfig.xml

 :
</attribute> <!-- could already exist -->

o The gov.nih.nci.security.configFile is the name of the property which

points to the fully qualified path foo/bar/ApplicationSecurityConfig.xml where the
ApplicationSecurityConfig.xml has been created in Step 4. The name of the
property must be the gov.nih.nci.security.configFile and cannot be
modified, as it is a system-wide property.

2. Save this file in a deploy folder (for example, {jboss-home}/server/default/deploy/).

Note: When deploying to JBoss 3.2.3, the properties-service.xml file is already
located in the folder {jboss-home}/server/default/deploy/.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 28 of 33

Step 7: Configure the JBoss JAAS Login Parameters
The suggested Authentication Credential Provider for UPT is NCICB LDAP. In order to
configure the UPT to verify against the LDAP, create an entry in the login-config.xml
of JBoss as shown in Figure 4-13. This entry configures a login-module against the UPT
application context. The location of this file is {jboss-
home}/server/default/conf/login-config.xml where {jboss-home} is the base
directory where JBoss is installed on the server.

Figure 4-13 Example login-config.xml entry

As shown in Figure 4-13:

• The application-policy is the name of the application for defining the
authentication policy – in this case, “abcapp ”.

• The login-module is the LoginModule class which is used to perform the
authentication task; in this case, it is
gov.nih.nci.security.authentication.loginmodules.LD APLoginModule .

• The flag provided is “required ”.

• The module-options list the parameters which are passed to the LoginModule to
perform the authentication task. In this case, they are pointing to the NCICB LDAP
Server:

<module-option name="ldapHost">ldaps://ncids2b.nci. nih.gov:636</module-
option>

<module-option name="ldapSearchableBase">ou=nci,o=n ih</module-option>

<module-option name="ldapUserIdLabel">cn</module-op tion>

Step 8: Deploy the UPT WAR
1. Copy the UPT upt.war in the deployment directory of JBoss which can be found at

{jboss-home}/server/default/deploy/ where {jboss-home} is the base directory where
JBoss is installed on the server.

Step 9: Start JBoss
1. Once the deployment is completed, start JBoss. Check the logs to confirm there are no

<application-policy name = "abcapp">

 <authentication>

 <login-module code =

"gov.nih.nci.security.authentication.loginmodules.L DAPLoginModule"

flag = "required" >

<module-option

name="ldapHost">ldaps://ncids2b.nci.nih.gov:636</mo dule-option>

 <module-option name="ldapSearchableBase">ou=n ci,o=nih</module-

option>

 <module-option name="ldapUserIdLabel">cn</mod ule-option>

 </login-module>

 </authentication>

</application-policy>

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 29 of 33

errors while the UPT application is deployed on the server.

2. Once the JBoss server has completed deployment, open a browser to access the UPT. The
URL will be http://<<jboss-server>>/upt, where the <<jboss-server>> is the IP or the
DNS name of JBoss Server.

3. The UPT Login Page displays. Enter the UPT Application using the login-id that was
assigned to the Super Admin in Step 1 and its password. Also use the UPT Application
Name specified in Step 4 for the Application Name.

4. You should be able to login successfully and the UPT Application Home Page displays.

Note: In case of any errors, follow a debugging and trouble shooting procedure to diagnose
and solve the issues.

Step 10: Add a New Application
Once the initial setup of UPT is complete, UPT is up and available for the applications to
start using provisioning for their authorization data. However, applications must be registered
and configured before they can start using the UPT.

1. To register an application, use the UPT front end user interface to create an entry for the
new application. Login as a Super Admin, go to the Application section, and select Create
a New Application. Once the details are entered, go to the User section to create Users.
Then return to the Application section to assign these Users as Application
Administrators.

2. Once the application registration is complete, it needs to be configured. First, make a new
“application” entry in the ApplicationSecurityConfig.xml file. (Use the existing UPT
application entry as a template - copy, paste, and modify for the new application.)

a. Replace the <context-name> with the new application name.

b. If the Application will use the default CSM provided Authorization Manager, then
leave the <authorization-provider-class> blank.

c. Replace the hibernate-config qualified path to point to the application’s hibernate-
config file. (Make sure the hibernate-config file resides in the correct location.) If the
application is going to use the Common Authorization Schema (which also hosts the
Schema for the UPT itself), then it can use the same hibernate-config file. In that
case, just copy the entry from UPT’s configuration.

5. Integrating with the CSM Authentication Service

5.1 Importing and Using the CSM Authentication Manager Class
To use the CSM Service, add the highlighted import statements (last two) as shown in Figure
 5-1 to the action classes that require authentication.

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 30 of 33

Figure 5-1 Example ABC application - Import statements in an action class

The class SecurityServiceProvider is the common interface class exposed by the CSM
application. It contains methods to obtain the correct instance of the
AuthenticationManager configured for that application. The client application abcapp
then uses the AuthenticationManager to perform the actual authentication using the
CSM.

Figure 5-2 illustrates an example of how to use the CSMService class in the ABC
application.

Figure 5-2 Example code to use the CSMService class in the ABC application

UserCredentials credentials = new UserCredentials() ;

credentials.setPassword(Form.getPassword());

credentials.setUsername(Form.getUsername());

//Get the user credentials from the database and lo gin

try {

 AuthenticationManager authenticationManager =

SecurityServiceProvider.getAuthenticationManager(“a bcapp”);

 boolean loginOK = authenticationManager.login(cred entials.getUsername(),

credentials.getPassword());

 if (loginOK)

 {

 System.out.println(">>>>>>>>>>>>> SUCESSFUL LOGI N <<<<<<<<< ");

 }

 else

 {

 System.out.println(">>>>>>>>>>>>> ERROR IN LOGIN <<<<<<<<< ");

 }

 }

catch (CSException cse){

 System.out.println(">>>>>>>>>>>>> ERROR IN LOGIN < <<<<<<<< ");

 }

import gov.nih.nci.abcapp.UserCredentials;

import gov.nih.nci.abcapp.model.Form;

import gov.nih.nci.abcapp.util.Constants;

import gov.nih.nci.security.SecurityServiceProvider ;

import gov.nih.nci.security.AuthenticationManager;

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 31 of 33

The client class obtains the default implementation of the AuthenticationManager by
calling the static getAuthenticationManager method of the
SecurityServiceProvider class by passing the application Context name – in this
example “abcapp ”. It then invokes the login method - passing the user’s ID and password.
Please note that application name should match the name used in the configuration files for
JAAS to work correctly. If the credentials provided are correct then a Boolean true is
returned indicating that the user is authenticated. If there is an authentication error, a
CSException is thrown with the appropriate error message embedded.

6. Integrating with the CSM Authorization Service

6.1 Importing and Using the CSM Authorization Manager Class
To use the CSM Service, add the highlighted import statements (last two) as shown in Figure
 6-1 to the action classes that require authorization.

Figure 6-1 Example ABC application - Import statements in an action class

The class SecurityServiceProvider is the common interface class exposed by the CSM
application. It contains methods to obtain the correct instance of the
AuthorizationManager configured for that application. The client application abcapp
then uses the AuthorizationManager to perform the actual authentication using the CSM.

Figure 6-2 illustrates an example of how to use the CSMService class in the ABC
Application.

import gov.nih.nci.abcapp.UserCredentials;

import gov.nih.nci.abcapp.model.Form;

import gov.nih.nci.abcapp.util.Constants;

import gov.nih.nci.security.SecurityServiceProvider ;

import gov.nih.nci.security.AuthorizationManager;

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 32 of 33

Figure 6-2 Example code to use the CSMService class in the ABC application

The client class obtains the default implementation of the AuthorizationManager by
calling the static getAuthorizationManager method of the
SecurityServiceProvider class by passing the application Context name – in this
example “abcapp ”. It then invokes the checkPermission method – passing the user’s ID,
the resources which he is trying to access and the operation which it wants to perform. Note
that the application name should match the name used in the configuration files as well as
configured in the databases for authorization to work correctly. If the user has the required
access permission, then a Boolean true is returned indicating that the user is authenticated. In
case of any authorization error, a CSException is thrown with the appropriate error
message embedded.

7. Integrating with the User Provisioning Service
This section’s intended audience is developers wishing to integrate their application(s) with
an existing UPT Deployment. (For a complete guide to UPT deployment, see Provisioning
on page 21.)

Once the initial setup of UPT is complete, UPT is up and available for the applications to
start using provisioning for their authorization data. However, applications must be registered
and configured before you can start using the UPT.

1. To register an application, use the UPT front end user interface to create an entry for the
new application. Simply login as a Super Admin, go to the Application section, and select
Create a New Application. Once the details are entered, go to the User section to create
Users. Then return to the Application section to assign these Users as Application
Administrators. (If you’re not the Super Admin, ask him/her to add your Application and
you as an Admin.)

try {

 AuthorizationManager authorizationManager =

SecurityServiceProvider.getAuthorizationManager(“ab capp”);

 boolean hasPermission = authorizationManager.check Permission(“user name” ,

“resource name”, “operation”);

 if (hasPermission)

 {

 System.out.println(">>>>>>>>>>>>> PERMISSION GRA NTED <<<<<<<<< ");

 }

 else

 {

 System.out.println(">>>>>>>>>>>>>PERMISSION DENI ED <<<<<<<<< ");

 }

 }

catch (CSException cse){

 System.out.println(">>>>>>>>>>>>> ERROR IN AUTHORI ZATION <<<<<<<<< ");

 }

NCICBNCICBNCICBNCICB

High Impact High Impact High Impact High Impact –––– High Value High Value High Value High Value –––– Business Results Business Results Business Results Business Results

CSM Guide for Application Developers Version: 1.1

Common Security Module Date: March 21, 2005

EkagraEkagraEkagraEkagra
Prepared for NCICB by Ekagra, 2005 Page 33 of 33

2. Once the application registration is complete, it needs to be configured. First, make a new
“application” entry in the ApplicationSecurityConfig.xml file. (Use the
existing UPT application entry as a template - copy, paste, and modify for the new
application.)

3. Replace the <context-name> with the new application name

4. If the Application will use the default CSM provided Authorization Manager then leave
the <authorization-provider-class> blank.

5. Replace the hibernate-config qualified path to point to the application’s
hibernate-config file. (Make sure the hibernate-config file resides in the
correct location.) If the application is going to use the Common Authorization Schema
(which also hosts the Schema for the UPT itself), then it can use the same hibernate-
config file. In that case, just copy the entry from the UPT’s configuration.

